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2. POTENTIAL OF REMOTE SENSING IN THE 
MONITORING OF WEED INFESTATIONS ALONG 
POWERLINE CORRIDORS 

Craig Harriss and David Gillieson 

2.1 SUMMARY 

The Chalumbin-Woree powerline corridor was examined in detail at seven locations.  
Percentage vegetation cover was measured and spectral reflectance data of weed species 
was collected in the field using a “Cropscan” Multispectral Radiometer.  Imagery of the 
powerline corridor was acquired at two different spatial scales.  One source was Ikonos 
multispectral satellite at four-metre resolution and the other was from an Airborne Data 
Acquisition and Registration (ADAR) system at approximately one metre ground resolution.  
This study examined the general criteria needed for quantitative ground measurements of 
reflectance to be used in classifying the spectral differences of weed species.  The specific 
focus was the determination of the spatial, spectral and radiometric resolution required to 
detect the fractional quantity of each weed species at the sub-pixel level using "Spectral 
Mixture Analysis" (SMA).  
 
Field measurements of the percent cover of weed species showed that within each square 
metre, one to three main species were present suggesting that SMA was a viable technique 
for determining the quantity of weed fractions in imagery at one metre spatial resolution.  
Signatures were made from the spectral reflectance measurements and found to be 
statistically separable. 
 
To relate field spectral responses to the imagery an empirical calibration was employed, 
avoiding complex atmospheric corrections.  However difficulty was experienced with 
calibration of the ADAR imagery due to an inherent interpolation algorithm in the camera's 
output. 
 
The Spectral Mixture Analysis was found to be unsuitable as a classifier of the ADAR 
imagery because of poor camera performance.  The spatial resolution of the Ikonos imagery 
was unsuitable for SMA, as there are only four spectral bands to unmix the contents of each 
4 metre x 4 metre area on the ground. 
 
There is definite potential to discriminate individual weed species using their spectral 
signatures.  However, vegetation reflectance patterns are broad and the variability within a 
species is much higher than apparent differences between species.  An image classifier that 
considers the variance in vegetation reflectance is required, together with a sensor with the 
spectral and radiometric qualities of the Ikonos satellite imagery but with the higher spatial 
resolution of an airborne camera (1m2).  Either a four camera airborne system giving a 
spatial resolution of 1m2 or a 4-band multispectral satellite sensor with two metre resolution 
(available 2005) can be expected to be far more successful than the imagery examined in 
this study. 
 
2.2 INTRODUCTION 

In the wet tropical zone of Queensland, the World Heritage Convention has protected much 
of the publicly owned tropical rainforest from logging and clearing, but other more insidious 
threats remain.  Roads and electricity supply corridors create linear barriers through natural 
areas, fragmenting the WTWHA.  Weed invasions along these corridors (see Section 1) 
contribute to fragmentation effects by competition with native species (shading, allelopathy), 
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and inducing disturbances such as fire, edge effects (see Section 3) or the influx of generalist 
species.  Thus, infrastructure corridors and invasive pest species have been identified as 
priority areas of research effort in the Wet Tropics World Heritage Area (WTMA 2000). 
 
In addition to the significant threats posed by fragmentation, several invasive weed species, 
which are in the higher categories of significance for Weeds of the Wet Tropics Bio-region 
(Werren 2001), occur in the linear infrastructure corridors that traverse the World Heritage 
Area.  WTMA (1999) identified a need to develop less field-intensive methods for the 
detection of invasions of new weed species, and to predict expansion of existing weed 
problems.  Good information on the density and location of weeds is essential to monitor the 
effectiveness of control programs and management strategies (Lamb 2000).  Ground 
surveys over large areas are labour intensive, costly and in the WTWHA, difficult to 
undertake during wet seasons.  Remote sensing has the potential to provide a practical and 
cost-effective monitoring tool both for threats such as weed incursion or for the success of 
rehabilitation.  It could give timely, up-to-date information on the distribution and abundance 
of weeds over wide areas, especially where seasonally wet roads prevent continuous access 
to some locations.  Remote sensing has the capability to discern small patches at a local 
scale of square metres as well as surveying on broad scales of square kilometres.  The 
ability of a Geographic Information System (GIS) to integrate remote sensing data also 
allows development of predictive modelling.  Such a powerful tool could assist in monitoring 
the spread of an aggressive weed such as Pond apple (Annona glabra), and in design of 
control strategies. 
 
2.3 POTENTIAL OF REMOTE SENSING AS A MONITORING TOOL 

FOR WEEDS – LITERATURE REVIEW 

2.3.1 Introduction 

Limited use and development of remote sensing in rainforest environments has occurred in 
Australia (Phinn et al. 2000).  One reason for this could be due to the fact that rainforests are 
located in mountainous areas with rugged topography and frequent cloudy weather.  Much of 
the groundwork in developing remote sensing as a useful tool has occurred in comparatively 
flat areas of temperate or semi-arid regions with consistently clear skies (Schetselaar and 
Rencz 1997; Hindle 1998; Lewis et al. 2000).  Most quantitative work on plant material has 
been for agricultural crops that predominantly have uniform low canopies (McNairn et al. 
2001; Nutter et al. 2001). 
 
One difficulty, which is exacerbated by mountain environments, is relating one remotely 
sensed image to another image captured at a different time.  An essential requirement of this 
is an adjustment of the levels of light recorded in each image, to a standard surface of known 
reflectance (calibration), while at the same time, accounting for all the variations in light 
levels arising from seasonal, view angle and atmospheric differences.  The calibration of an 
image can be a difficult and complex task but can be avoided if one limits analysis to just 
spatial changes, rather than subtle spectral changes (Adams et al. 1995). Thus, remote 
sensing has been used for monitoring land clearing, but less frequently applied to detecting 
small changes in forest type. 
 
2.3.2 Using Remotely-Sensed Imagery to Determine Canopy Composition 

Satellite imagery is widely used to map broad vegetation or land use classes.  However the 
highly complex mix of canopy types in rainforests presents difficulties when standard 
classification techniques are used on coarse resolution.  To overcome similar problems in 
other environments, sub-pixel component analysis has been used with varying success for 
tasks such as arid-zone vegetation mapping (Lewis 1998) and agricultural weeds surveys 
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(Chewings et al. 2000, Hindle 1998).  It shows promise for the mapping of forests in Australia 
(Dibley et al. 1998), and in recognition of its growing importance, several new versions of 
GIS packages have included modules for this new technique (often called "Linear 
Unmixing"). 
 
2.3.3 Spectral Component Analysis 

Spectral component analysis is suited to the situation where the resolution of an image (e.g. 
a Landsat scene with a ground resolution of 25 metres) is larger than the size of the features 
of interest e.g. a patch of weeds. 
 
Spectral component analysis can determine the proportions of each cover type or canopy 
species in each pixel, but only after three requirements are met: 
 
1. Determination of the spectral reflectance characteristics of the canopy species occurring 

in each pixel; 
2. Calibrated imagery; and 
3. Imagery that has an equal or greater number of bands of information than the number of 

distinct canopy types occurring in each pixel. 
 
The last requirement can be met by reducing the size of the ground resolution element (pixel) 
so that fewer species are present within it or by obtaining a larger number of bands in the 
imagery (the rationale behind hyperspectral imagery). 
 
2.3.4 Measurements of Spectral Reflectance of Species 

Spectral reflectance characteristics of individual species can be measured in the field with a 
hand held radiometer.  Sampling the reflectance of plants in situ takes into account the 
reflectance of other components such as shade and bark, just as occurs in remotely sensed 
imagery.  The spectral signal received by a sensor (whether it is near the canopy or above 
the atmosphere) is a mix of different components like leaves, flowers, stems, understorey, 
and is affected by shadow within the canopy (Dury et al. 2000).  For instance, short grass 
has less shade within its canopy than thick long grass which, in turn, has less than a 
rainforest.  Skidmore and Schmidt (1998) suggest that canopy structure and soil background 
are two criteria that can alter reflectance. 
 
Remote sensing systems are designed to sample these spectral responses of Earth surfaces 
in several bands, so that enough information is obtained to distinguish one kind of surface 
from another (Richards 1993).  Common Earth surfaces such as leaves, soil, water, rock, 
bark and pavements all reflect different parts of the spectrum differently.  The reflectance of a 
surface can be expressed as a ratio or a percentage of the quantity of light incident on that 
surface.  A graph can represent the reflectivity response of a surface by showing percentage 
of incident light reflected at different wavelengths, as in Figure 2.1. 
 
The reflective properties of minerals and vegetation have been studied in depth.  Leaves are 
interesting in that the reflective properties change with the loss of moisture and variation in 
pigments such as chlorophyll.  Chlorophyll (a) and (b) are important in photosynthesis, they 
absorb light at particular wavelengths in the red and blue regions of the spectrum (Curran 
1985).  This selective absorption gives leaves their green colour because comparatively 
more green light is reflected, as shown in Figure 2.2.  Green leaves vary in the thickness of 
their composite layers leading to further variation in the quantity of light absorbed, 
transmitted and reflected.  The cell walls and numerous air spaces in the mesophyll of a 
moist green leaf (Curran 1985) are responsible for the high reflectivity in the Near Infra Red 
(NIR) region of the spectrum (at wavelengths greater than 700nm), which is invisible to the 
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human eye.  Dry leaves have lost their moisture and thus the structure responsible for the 
high NIR reflectivity of green leaves.  The NIR end of the spectrum therefore makes a useful 
diagnostic feature in remotely sensed imagery for maturation or drying out of vegetation. 
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Finding a way to discriminate plants, or in this case weeds, by their spectral reflectivity 
response requires dealing with three main issues: 
 
1) Genuine differences between species in their spectral reflectivity response; 
2) Genuine variation within a species in its spectral response; and 
3) Uncertainty due to the external condition at the time of sampling such as lighting or 

variation in sampling methodology 
 
Point (1) is a straightforward problem and, given a fine enough resolution, is considered 
statistically solvable.  Several studies have investigated different features of plant spectral 
response to find the best diagnostic method of differentiating between species.  Some of the 
relevant findings in the literature are summarised below. 
 
Asner and Lobell (2000) suggest that features of plant spectra that are least variable within 
species but distinct between species are the most desirable for discrimination between plant 
spectral signatures.  Skidmore and Schmidt (1998) found that for eight species of grass there 
were more pairs of significantly different reflectances in the red region at 650nm (550-
680nm) and NIR region at 1300nm than at 800nm in NIR region.  Differences were found in 
the NIR (800 nm) but were not statistically significant because of the greater variances in this 
region.  
 
Kumar and Skidmore (1998) compared reflectance spectra of ten Eucalyptus species in the 
field.  While some species could be differentiated easily over a wide range of wavelengths, 
others showed differences only at certain positions, and others showed no differences at all.  
Reflectance values at 550nm, 630nm, 800nm and red edge features seem to be the best 
locations for discrimination of eucalypts.  Nutter et al. (2001) also used field methods to 
correlate soyabean yield and nematode infestation using "Cropscan" reflectance, airphoto 

Figure 2.1:  An example of typical reflectance of  
green vegetation, Guinea Grass (Panicum maximum). 
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images and satellite images (Landsat 7).  Percentage reflectance at 810nm had the best 
relationship with nematode infestation explaining fifty-two percent of the variation in 
population densities. 
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Figure 2.2:  Leaf section showing interaction of visible and near infrared light.  

 
 
The position of the steep rise in reflectance of green leaves in the NIR region is known as the 
“red edge position”.  Curran et al. (1998) and Datt (2000) found that the position of this ‘red 
edge’ correlated with the chlorophyll and carotenoid content of leaves. 
 
Farrand et al. (1994) suggest that "apparent" reflectance is dependent not only on the 
mixture and the composition of surface materials but also on the physical condition of the 
surface and its orientation to the sun (point c above).  Thus while low reflectance may be due 
to the low reflectance of a surface, it also may be affected by poor orientation or lighting (i.e. 
shade).  Sun angle, sensor angle, topography, aspect and leaf angle (and the change in its 
orientation during the course of a day) interact in complex geometric ways.  All of these 
factors can influence the amount of shade the sensor "sees" (Curran 1985). 
 
McGowen (1998) highlights how environmental and seasonal variation in weed species can 
cause their spectral signatures to vary over time (i.e. point 2 above).  Environmental variation 
such as in soil moisture status or poor drainage may affect the density of plants and alter the 
purity of their spectral reflectance.  Seasonal differences, such as distinct colouring of flower 
heads (e.g. molasses grass, Melinis minutiflora), may be useful in discriminating a weed from 
its surrounding vegetation and soil spectra.  However, these differences may also be a 
confounding factor in the Wet Tropics area because altitudinal and climatic gradients affect 
the timing of events such as flowering and seed set.  It may therefore be useful to represent 
a species by 2, 3 or 4 different signatures (or a mixture of these), which represent distinct 
stages of growth. 
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2.3.5 Calibrating an Image 

A simple, robust calibration technique that corrects for atmospheric absorption and scatter, 
called the "empirical line method," has been used successfully in many studies (Roberts et 
al. 1993; Farrand et al. 1994; Adams et al. 1995; Lewis 1998; Edirisinghe et al. 1999 and 
Sabol et al. 2002).  It uses a linear regression between field spectral data and the image 
spectral values to define the relationship between them for each band.  
 
2.3.6 Spectral Component Analysis of the Image 

Spectral mixture analysis is a way of identifying which cover classes are present in a pixel 
and estimating their relative contribution to the mixed pixel (Settle and Drake 1993; Adams et 
al. 1995).  The unmixing algorithm is mathematically simple, assuming an additive 
combination of the spectra of the cover classes.  
 
With an equation for each band of imagery, fractions can be solved simultaneously for up to 
as many classes as there are bands of imagery.  Thus to find the fractions of a large number 
of signatures, a large number of spectral bands are needed, e.g. Landsat TM covers seven 
bands.  Thus, proportions of up to seven signatures (ideally, seven species) can be 
"unmixed".  Hyperspectral imagery, which covers 128 to 212 bands, has been used in many 
studies for spectral mixture analysis (eg, Anstee et al. 2000; Chewings et al., 2000; Hermann 
et al. 2000; Lewis et al. 2000). 
 
The pixel "unmixing" algorithm examines every pixel for the best combination of signatures.  
It produces a map for each signature showing its proportion in each pixel.  From these maps 
it is theoretically possible to calculate a quantitative measure of the total area occupied by 
each signature or ground cover type. 
 
From this review of the literature it seems that if spectral component analysis could be 
successfully applied, two aspects of remotely sensed weed surveys could be addressed 
simultaneously: 
 
1. The difficulty of obtaining fine scale imagery with high enough resolution to detect 

individual clumps of a weed species; and 
2. A quantitative measure of the proportion of each species could be made with greater 

accuracy than with standard classifiers. 
 
2.4 RESEARCH QUESTIONS 

The research questions investigated in this study are: 
 
1. Can multi-spectral satellite or airborne imagery discriminate individual weed species and 

if so what spatial resolution is needed?  
2. Is it possible to determine the fractional quantity of each weed species at the sub-pixel 

level using "Spectral Mixture Analysis", and if so what conditions are best for doing this?  
3. Which sensor is likely to provide the best overall result for the WTWHA? 
 
2.5 METHODS 

2.5.1 Study Sites 

The focus of this study is seven sites surrounding towers in the Chalumbin-Woree powerline 
corridor.  The corridor passes through World Heritage listed rainforest, from Bridle Creek 
(near Davies Creek), to Woree, a suburb of Cairns.  Figure 2.3 shows a colour satellite 
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image of the study area.  Percentage cover was measured and spectral reflectance data of 
weed species was collected using a hand-held radiometer.  Imagery of the powerline corridor 
was acquired at two different spatial scales.  One source was Ikonos multispectral satellite at 
four metre resolution and the other was from an Airborne Data Acquisition and Registration 
(ADAR), system at approximately one metre ground resolution (Figure 2.4). 
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Figure 2.3:  Ikonos satellite image of the study area showing  

the powerline towers within the study sites as red dots. 
 
 

2.5.2 Floristic Survey Methods 

Three sets of field data were collected: 
 
1. Weed and rainforest species present at each site  
2. Percentage cover by weed and rainforest species 
3. Spectral reflectance recordings of weed species. 
 
Transects 
 
Mr. Robert Jago, a well-respected botanist with many years experience in the Wet Tropics, 
was employed to identify all plants at each site.  Along a sixty metre transect at each site all 
plants located within five metres each side of the line were identified.  
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Figure 2.4:  Diagram showing
the three methods of data
collection and the various
sources of radiation detected by
the sensors.  Also illustrated is
how the finer resolution
instruments contain fewer
species within the spatial element
of each pixel. 
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Percentage Cover 

Species composition was estimated in several relatively homogeneous areas of the sites.  
This was used to assess the accuracy of the species identification in the classification of the 
satellite and airborne imagery (ground truthing).  The sites were divided into two or three 
relatively homogeneous areas assumed to be large enough to be visible from the air.  In 
each area, three to five quadrats, each one square metre, were examined visually for 
species content.  Assessment was based on the percentage of leaf area of each species. 
 
2.5.3 Field Reflectance Measurements 

Spectral reflectivity measurements were collected in the field with a hand-held radiometer 
(“Cropscan” Multispectral Radiometer) and analysed to develop spectral classes to be 
identified in the imagery.  The sensor measures the level of radiation from above and below 
simultaneously in eight discrete, narrow bandwidths (Figure 2.5). 
 

 
Figure 2.5:  "Cropscan" Multi-Spectral Radiometer band positions showing also a typical  

reflectance curve of green vegetation. Source Cropscan MSR at (http://www.cropscan.com). 
 
2.5.4 Data Analysis  

Percentage reflectance for each sample was graphed to gain a visual appreciation of 
variability of the reflectance curves of different species.  Each species showed a wide 
variation in reflectance that, in most cases, appeared larger than the apparent differences 
between species.  The data was entered into a GIS to organise it into groups of spectral 
classes (using a cluster analysis).  The classes obtained were further subdivided into groups 
containing samples of a single species.  The validity of these groups as distinct spectral 
classes was tested statistically using discriminant analysis and further refined.  "Signatures" 
for classifying the imagery were made from the resultant spectral classes.  The signatures 
were tested for their separability using a divergence indicator.  Both the ADAR and the 
Ikonos imagery were calibrated and classified using the signatures described. 
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2.6 RESULTS  

2.6.1 Species Present in Transects 

Weed species recorded on the transects are compiled in Appendix 1.1.  There were two 
hundred and twenty-seven species identified within the ten metre wide quadrats along the 
thirty metre transects, but most of these occurred in small numbers.  A number of rainforest 
pioneer tree species were present as well as many shrubs, herbs, ferns and vines.  There 
were forty-four weed species identified and six out of seven sites had one or more weeds as 
the dominant class of vegetation (Table 2.1). 

 
Table 2.1: Summary of dominant or common weeds found adjacent to transects at sites on 
Chalumbin-Woree powerline corridor.  Weeds were not dominant near the transect at Tower 10108. 

 
Site Tower No. 

Weed Species 
10091 10094 10096 10103 10104 10108 10109 

Ageratum conyzoides X  X X   X 
Axonopus compressus X  X    X 
Axonopus fissifolius     X   
Brachiaria decumbens  X X X    
Cyperus aromaticus       X 
Hyptis capitata    X    
Lantana camara X X X X    
Melinis minutiflora X X X X X  X 
Mimosa pudica X X X X X  X 
Paspalum paniculatum X  X X X  X 
Rubus alceifolius    X X   
Sporobolus jacquemontii   X  X  X 
Stachytarpheta jamaicensis X X X X X  X 
 
 
2.6.2 Percentage Cover Measurements 

Despite the large number of species found in the powerline corridors, within the area 
represented by one pixel in the ADAR imagery (1.0 m2) there were typically one to three 
dominant species and generally no more than five species per pixel.  No quadrat had more 
than four species with greater than five percent cover.  Therefore the capacity of spectral 
unmixing techniques to examine the proportion of a weed species in a mixed pixel is not 
exceeded for three bands of imagery at one metre resolution (i.e. the resolution of the ADAR 
imagery). 
 
2.6.3 Spectral Reflectivity 

The unsupervised classification procedure in IDRISI produced twenty-eight groups of 
spectral classes from a total of nine hundren and thirty samples.  Thirteen groups contained 
more than four samples of weeds, and the larger groups contained a number of different 
species.  Figure 2.6 provides the mean spectral reflectance curve of the largest twelve 
groups and Table 2.2 lists the majority of the species in each group. 
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Signature Clusters 

Signatures for each group were created that conformed to the bands used in the ADAR and 
Ikonos imagery.  After creating signatures the separability of every pair was tested with a 
divergence score.  A score of two thousand indicates complete signature separability 
(obtained in forty-seven percent of signature pairs) while a score between 1200 -1500 
suggests separability is less likely, and a score less than one thousand suggests it is unlikely 
(Stow et al. 2000).  The majority (seventy-seven percent) of signature pairs earned scores of 
1900 or more, and are thus likely to be able to be separately identified when classifying an 
image.  
 
2.6.4 ADAR Imagery Results 

The focus of the study was to investigate the use of field reflectance measurements to 
classify remotely sensed imagery.  The imagery came from an Airborne Data Acquisition and 
Registration system (ADAR) designed and manufactured by Positive Systems Inc. 
(http://www.possys.com).  The basis of these images is a Kodak digital camera (DCS460) 
mounted on a small aeroplane and connected to ancillaries such as a controlling terminal, a 
GPS and a facility to store the digital images as they are captured.  Imagery was supplied by 
the Biophysical Remote Sensing Group at the University of Queensland.  The ADAR system 
is capable of producing high resolution images of the Earth's surface in colour or colour infra 
red (CIR). 
 
The resolution can be 0.5 - 2.0 metre pixels, depending on the flying height.  Each image is 
3064 x 2040 pixels.  The spectral response for CIR imagery is given in Figure 2.7; note the 
positions of each band.  Instead of recording light levels in the blue region (~450nm) the 
sensor records the near infra red light, which is highly reflected by green vegetation.  Figure 
2.7 indicates that the spectral responses of each sensor overlap, allowing a broad range of 
wavelengths to reach each sensor.  Compared to a satellite sensor, the bands of which are 
well separated in wavelength, the ADAR camera's reduced purity of signal decreases its 
sensitivity to fine spectral features.  This does not matter to the human eye but fine spectral 
resolution is an important criterion for detecting subtle reflectance features (Anstee et al. 
2000; Stow et al. 2000).  
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Mean Reflectance of Major Clusters of Weed Spectral Signatures
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Figure 2.6:  Mean reflectance of major spectral clusters of weeds 
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Figure 2.7:  CCD spectral sensitivity of ADAR camera.  Source: Phinn pers.comm. 
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Calibration 

The image (Figure 2.8) must be calibrated in order to use the signatures made from the field 
reflectance measurements of weed species.  The calibration process expresses the imagery 
values in the same units or terms as the data from the hand held radiometer. 
 
The reflectance measurements of specific locations within the image were regressed against 
the numerical value (digital number) of their corresponding pixels for each band.  The 
resulting line of best fit was curvilinear and not the linear relationship defined in previous 
studies (Farrand et al. 1994; Edirisinghe et al. 1999).  Therefore field reflectances were log-
transformed to give a linear relationship to the values in the image (Harriss 2002). 
 
Classification 

An unsupervised classification indicates the maximum number of classes possible given the 
spectral space of the image.  It does not use any field radiometer data to create these 
classes.  As an example, using unsupervised classification for the site near Powerline Tower 
no.10103 (Figure 2.9), twenty-two spectral classes were found.  However, there is likely to be 
difficulty in separating some signatures, eg, spectral cluster “2” has membership both on the 
road and in the forest. 
 
A supervised classification technique using the radiometer field signatures to classify the 
calibrated image of the same site (Figure 2.10) showed an allocation of only seventeen out of 
the original sixty-eight classes.  The areas of interest to this study, the road verge and the 
clearing around the tower, belonged to only two classes, shown in pink and blue-green.  This 
suggests two possibilities: 
 
(a) That the calibration of the image did not bring the pixel values, at those locations, within 

the ranges of most of the signatures; or  
(b) That there was insufficient spectral differentiation in the image in those areas of 

interest. 
 

Chalumbin-Woree
 Powerline tower no 10103

Access
Road

ClearingN
0    metres    30

 
Figure 2.8: ADAR image showing one of the study sites on the  

Chalumbin-Woree powerline corridor near Powerline Tower no.10103. 
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Figure 2.9: Unsupervised classification of the image around powerline tower No. 10103.  The 
spectral class of shade is in light blue, while dark blue is situated on the road and part of the 
clearing.  Red delineates the clearing and the road edge while bright green is possibly the legs of 
the tower. 

 

 
 

Figure 2.10: A supervised classification with minimum-distance measure using the group of 68 
signatures derived from the field data by SPSS discriminant analysis. 
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Figure 2.11:  Unmixed fractional map of shade class.  A pixel coloured dark green in this image 
indicates an estimated 90% to 100% shade. 

 
 
Spectral Mixture Analysis 

Figure 2.11 shows the fraction of one signature (shade) in each pixel of the image while 
Figure 2.12 shows the fraction of a signature that is itself a mixture (containing mostly 
Rubus).  The members of the mixed group “14” were present along the road to some extent 
as found in Figure 2.12, but a large number of images generated by this procedure were 
blank or meaningless.  The way each signature represents a spectral class, and the way the 
spectral components mix to form the overall reflectance of a pixel needs further examination 
and development of theory. 

 

 
 

Figure 2.12:  Fraction of group 14, which is a mixture of  
mostly Rubus, Dicranopteris, Alpinia spp and Panicum. 
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2.6.5 Ikonos Satellite Imagery Results 

A similar set of procedures was undertaken for the Ikonos satellite imagery.  The Ikonos 
satellite was launched in 1999 and provides high resolution imagery in four bands, blue, 
green, red and near infra-red (Figure 2.13).  The ground resolution element, which equates 
to a pixel, is 4m x 4m, and the instrument sensitivity is high, recording in two thousand and 
forty-eight grey levels as opposed to the two hundren and fifty-six levels (dn) of the aerial 
imagery (Lillesand and Kiefer 2000).  Its accuracy for mapping purposes is excellent (Fraser 
2000).  The imagery is expensive at present but is expected to become less so with time and 
competition from other suppliers such as Orbimage. 
 
Calibration 

The imagery was calibrated using the empirical line method, however, unlike the ADAR 
images, the empirical relationships were linear as expected from the literature.   
 

 
 

Figure 2.13:  Ikonos spectral response for 4m bands: source spaceimaging.com.  Note that 
there is much less overlap between bands compared to the ADAR spectral response and the 
sensitivity levels are equal across the four bands. 
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Figure 2.14: Unsupervised classification of the site around tower 10103, showing  
clusters of pixels with similar values (clusters 1-13 >20 pixels, clusters 14-28 <7 pixels). 

 
 
Classification and Spectral Mixture Analysis 

An unsupervised (clustering) classification of the same site near tower 10103 (Figure 2.14) 
shows that in the area of interest (the clearing and road verge) many spectral classes can be 
detected.  In fact more spectral classes were discernible in this imagery than in the ADAR 
imagery, which is surprising given that each pixel covers an area sixteen times larger.  It 
suggests a potential to detect a variety of weed species  
 
Supervised Classification and Spectral Mixture Analysis showed similar results to the ADAR 
imagery except that in general, more classes were obtained in the Ikonos imagery. 
 
2.7 DISCUSSION 

The percentage cover results showed that one to three species dominated an area the same 
size as the spatial resolution of the aerial imagery.  Other species occurred in very low 
proportions.  Although the samples were chosen in reasonably homogeneous areas, this 
spatial resolution of the field data to one metre matches the spatial resolution of the ADAR 
imagery.  Therefore spectral mixture analysis of the ADAR imagery should be capable of 
analysing the cover types in at least some areas of the powerline clearing, provided that 
spectral separation is satisfactory and that variations within species and external conditions 
can be controlled. 
 
Weeds dominated the powerline corridor in most places, however, the species list from the 
transects (Appendix 1.1) included only one species found in the categories of serious 
significance (one or two) of the fifty-seven classified by Werren (2001), out of the five 
hundred and four exotic plants with self-maintaining populations recognised in the WTWHA 
(Werren 2001).  However, almost four hundred and fifty species remain to be examined by 
this classification, so other serious weeds may be present.  Guinea grass (Panicum 
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maximum) falls into the second group, mainly due to its aggressive characteristics and 
potential to impair ecosystem function as a ‘transformer species’ (Werren 2001).  However, 
Guinea grass was only found commonly in a few subsites of the transects and is not the 
dominant feature that it is in other powerline and road networks, such as the Palmerston area 
(see Section 1). 
 
Analysis is required of a number of interactions and effects such as sun / leaf angle, shading 
etc. on the field spectral responses of weeds to enable full understanding of the variation that 
is due to species difference alone.  There is a wide variation of the spectral response within a 
species that can overlap the variation seen in other species.  For accurate results in 
classification of imagery, a method that allows for the wide variation in plant reflectivity 
response must be incorporated.  The mean value is clearly inadequate for representing the 
variance without first trying to define what a representative sample of the species is or its 
separate stages of growth. 
 
There is adequate power in many statistical processes to be able to separate small 
differences in spectral signatures but GIS image processing software is limited to a resolution 
of two hundred and fifty-six levels of information (eight bit) for many processes. 
 
2.7.1 ADAR Imagery 

The ADAR imagery showed only a few spectral classes in the cleared areas.  This suggests 
that either the number of spectral classes in the clearing was limited to relatively few or the 
imagery did not represent the range of reflectances actually present in this area.  The 
brighter areas in the images (the powerline clearing and road) were close to saturation levels 
for the camera (255 dn) and this could explain the loss of detail, especially when considering 
the analysis of the camera’s performance by Dean et al. (2000).  Their assessment was that 
quantitative analysis of colour, or colour infra red imagery (CIR) of vegetation with this 
camera is not reliable above sixty-seven percent of the maximum range in the green and red 
bands (ie. 170 dn).  The ADAR imagery for the seven sites of this study had maximum digital 
numbers (dn) of 188 to 255 in the red bands.  Similarly in the green bands the maximum dn 
ranged from 236 to 255.  This is clearly outside the reliable range for both red and green 
bands as described by Dean et al. (2000). 
 
The camera’s unsatisfactory performance can also explain the difficulty found with the 
calibration of the ADAR imagery, and why the unconventional logarithmic transformation was 
needed to achieve calibration.  Dean et al. (2000) found that Kodak`s Active Interpolation 
(KAI) algorithm (that produces the digital image) includes edge enhancement, increased 
contrast and spectral response fall-off that varies with wavelength and scene composition.  
These may be good features for photo-journalism but are undesirable for remote sensing 
especially for quantitative analysis applications such as extracting reflectance information.  
The interpolation of colours from neighbouring pixels defeats the purpose of high spatial 
resolution.  Thus successful “unmixing” of the component reflectances of a pixel is 
compromised. 
 
Accuracy of the calibration process is critical to the success of classifying with field spectral 
measurements.  The image in Figure 2.11 shows a reasonable result for the “shade” class, 
but the “bare ground” class is positioned where there is rainforest, suggesting either a 
calibration inaccuracy, or an inadequate separation of the signatures used. 
 
The unmixing algorithm used in this study requires very accurate calibration because it uses 
only the mean value in signature files to determine the mixture of components in the pixel.  
The best fit is simply the one with the smallest error.  However, it takes no account of the 
spread in the spectral response pattern of the cover type.  This can work well in cases where 
the surfaces are comprised mostly of non-photosynthetic materials such as in arid areas or 
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for detection of certain chemical absorption phenomena associated with particular minerals 
(Atkinson et al. 1997).  But vegetation response patterns are broad and led Asner and Lobell 
(2000) to say that “broad variations in endmembers often leads to a wide range of plausible 
cover fraction results”.  Therefore it is “desirable to establish features of the spectrum that 
display the least variability while remaining distinct”.  An alternative classifier such as “Fuzzy 
C-means” might tolerate high variance in the signature yet still produce a plausible result. 
 
An additional problem with green vegetation is that the NIR wavelengths are highly reflective 
and the multiple reflections within a canopy amount to non-linear mixing of the spectral 
components.  Bastin (1997) and Small (2001) mention this difficulty and Borel and Gerstl 
(1994) have actually modelled nonlinear mixing. 
 
2.7.2 Ikonos Satellite Imagery 

Many of the above comments apply also to the Ikonos Satellite Imagery.  Supervised 
Classification and Spectral Mixture Analysis showed similar results to the ADAR imagery 
except that in general, more classes were obtained in the cleared areas with the Ikonos 
imagery.  This improvement could be attributed to having one more band of information 
available in the Ikonos imagery but it is more likely that it is a reflection of the higher quality 
of instrument in the satellite.  Full exploitation of the greater sensitivity of the Ikonos imagery 
(requiring improved GIS software) will enable even better discernment of subtle spectral 
differences in vegetation. 
 
The satellite passes the Equator at 10.30am each day so imagery of North Queensland 
(shortly before 10.30 am) has some shading due to morning sun angles and effects of 
undulations in the canopy.  Ideally, any imagery used for quantitative assessment should be 
corrected for illumination effects (McDonald et al. 2000; Shepherd and Dymond 2000) due to 
topographical aspect and sun angle.  This procedure was considered beyond the scope of 
this project and would require a fine scale digital elevation model (DEM), but offers potential 
for better results. 
 
2.8 CONCLUSION 

Technical challenges facing the development of a methodology to use remote sensing and 
image interpretation in Wet Tropics vegetation monitoring can be summarised as concerns 
with spatial, spectral and radiometric resolution. 
 
2.8.1 Spatial Resolution 

The percentage cover measurements showed that there are mostly one to three, or 
sometimes four, dominant weed species in a one square metre quadrat on the Chalumbin-
Woree powerline corridor.  This suggests that a one metre spatial resolution with three bands 
of imagery would be the minimum necessary to unmix spectral components in homogenous 
areas.  The one metre spatial resolution of the ADAR imagery in three bands is therefore 
theoretically adequate.  The spatial resolution of the Ikonos satellite is much coarser than the 
patch size of most weeds (except possibly Lantana, Panicum, Themeda and Melinis).  
Spectral Mixture Analysis is difficult to apply when there are more spectral classes 
contributing to a mixed pixel than bands of imagery.  Resolution coarser than one to two 
metres is likely to be inadequate for mapping individual weed species.  Thus, Landsat ETM+ 
imagery (twenty-five metre cells) is unlikely to be productive using this approach except 
where the patch size of a weed species is greater than 0.1hectare. 
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2.8.2 Spectral Resolution 

To discriminate one species of weed from another requires a feature that is distinct between 
species, but constant within an individual species.  This study has examined the reflectance 
at eight locations in the light spectrum and found that the ranges within a species are large 
compared to the differences between species.  The solution to this conundrum is to 
characterise the reflectance of a species across all eight bands simultaneously whilst 
accounting for or minimising the other variables.  Achieving this requires more data than was 
obtained by this study.  However, this study was valuable in highlighting the range of issues 
involved. 
 
Good spectral reflectance information about weeds may require: 
 
a) Measurement of the full cycles of reflectivity as they change with the seasons 

(phenological cycles measured around the year at the same sites); 
b) Measurement at a consistent time of day, or investigation of time of day and its effect on 

reflectivity with regards to geometry of sun / leaf / sensor angles and diurnal moisture 
change in the leaf tissues; and 

c) Understanding of instrument variables such as calibration, and performance with respect 
to light conditions or height above the canopy.  

 
The basis of image calibration is that a relationship, preferably linear, can be found between 
measurements of field reflectance and the brightness levels measured by airborne or satellite 
sensors (Niemann et al. 2001).  This assumption was shown to be incorrect for the ADAR 
data.  The problem was probably due to the adjustment of exposure levels and to the nature 
of the Charged Coupled Device (CCD) in the camera when it is used in colour mode 
(gathering data in three colours rather than in monochrome) (Dean et al. 2000).  However, 
the satellite data did show a linear relationship to field spectral measurements.  Better quality 
signatures, image calibration and spatial resolution would confirm the linear relationship for 
the Ikonos satellite. 
 
2.8.3 Radiometric Resolution 

The analysis of the field spectral data showed that there is definite potential for developing 
reliable signatures for spectral classes of weeds from field data.  The novel technique of 
entering the field data into a GIS and image interpretation program is an excellent way to 
begin the process of finding existing spectral classes.  The clustering procedure in IDRISI 
looks for true clusters (Richards 1993; Eastman 1999) in the data but the statistical resolution 
was limited by eight-bit data processing (eight bit data has only two hundred and fifty-six 
values and cannot therefore represent real numbers with greater than three significant 
figures).  Subsequent statistical analysis showed that finer division of spectral classes to near 
species level was justifiable, and that the real number of signatures developed from these 
was divergent enough to be separable in ninety-eight percent of pair-wise combinations.  
Many of the classification routines in IDRISI require eight-bit images and therefore do not 
take advantage of the high radiometric resolution available with the latest satellite 
capabilities.  This problem of radiometric resolution is shared by many remote sensing and 
GIS packages at present. 
 
The unmixing routine in IDRISI does, however, use real numbers.  This classifier has a 
fundamental assumption that the spectral response of a surface can be represented by a 
mean value.  It takes no account of the variation of reflectance seen in vegetation.  An 
additional problem with spectral component analysis is the assumption that the reflectance of 
a pixel is a simple addition of the reflectance of the components within the ground resolution 
element.  Green vegetation is highly reflective in NIR wavelengths and likely to bounce or 
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reflect more than once within a plant canopy thereby losing more energy through absorption 
and transmission, degrading the distinctive spectral characteristics of particular plants (Borel 
and Gerstl 1994; Bastin 1997; Small 2001). 
 
The choice of bands in the various sensors is important.  Bands that show the features of the 
plant spectra that are least variable while still distinct are the most desirable (Asner and 
Lobell, 2000).  This study did not examine the advantages and disadvantages of different 
bands, but the “Cropscan” MSR produced readings at 810nm that were very sensitive to 
small changes in calibration of the instrument.  They were also highly variable, a fact noted in 
other studies (Skidmore and Schmidt, 1998).  There is no doubt that the analysis of many, 
narrow, more discrete bands (with no overlap), gives the user greater power of spectral 
discrimination (Curran 1985; Anstee et al. 2000; Lillesand and Kiefer 2000).  Asner and 
Lobell (2000) found that moderate bandwidths (20-30nm) were optimal since wider 
bandwidths confused some classes and smaller bandwidths were subject to high frequency 
noise. 
 
2.8.4 ADAR (Airborne) Imagery 

The performance of the ADAR imagery was disappointing despite its excellent spatial 
resolution.  The overlapping bands and the fact that the colour is produced by interpolation 
(averaging the dn in each band over ten pixels or so) means that quantitative analysis is 
imprecise.  The response is not linear above sixty-seven percent saturation (ie above 170 
dn).  These problems can only be overcome by the use of a separate camera or separate 
image for each band. 
 
2.8.5 Ikonos Satellite Imagery 

The high radiometric resolution (11 bit) of the Ikonos satellite produced high quality data.  
The four discrete bands of Ikonos positioned right across the range of wavelengths expected 
to be most informative for vegetation studies gave good spectral coverage.  However it may 
be more effective to use field reflectance at 760nm when analysing Ikonos imagery, since it 
is not as variable as reflectance at 810nm.  The imagery should also be corrected for 
illumination effects using a Digital Elevation Model (DEM).   
 
2.8.6 Hyperspectral Data 

Perhaps the ideal imagery for discriminating weeds would be something like Compact 
Airborne Spectrographic Imagery (CASI) (Lewis 1998) that has eight to twenty bands each 
20-40 nm in width but with eleven bit radiometric resolution and one metre spatial resolution.  
The Multi Spectral Airborne Video System (MAVS) (Edirisinghe et al. 1999) that uses four 
cameras, each with a narrow band pass filter, would be a vast improvement on the ADAR 
system for quantitative analysis.  The Multispectral Airborne Digital Imaging System (MADIS) 
system operated by Charles Sturt University has similar specifications. 
 
2.9 RECOMMENDATIONS 
• The “Cropscan” MSR should be tested under standardised conditions. 
• Further work needs to be done to better characterise the spectral responses of weeds. 
• To effectively estimate proportions of land cover such as clumps of weeds from imagery 

requires: 
− Calibrated imagery; 
− Suitable band widths (20 – 30 nm) in the appropriate areas of the spectrum; 
− A high spatial resolution (0.5 – 2 m) that contains few spectral components; 
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− Correction for illumination effects; and  
− Processing with classifiers that allow for the variation seen in the spectral response 

patterns of vegetation. 
• Alternative image interpretation software is required with the ability to handle twelve -bit 

data and real numbers to take advantage of the high dynamic range of the latest satellite 
data and to be able to discriminate the subtle differences in vegetation signatures.  
Another feature that would reduce time and effort is signature portability (i.e. signatures 
that can be used on multiple images and in a variety of classifiers).  

• Classifiers that allow for variance in a signature should be investigated, e.g. “Fuzzy C-
means” or “Artificial Neural Networks” (Atkinson et al. 1997) may be more effective at 
classifying vegetation than Linear Unmixing. 

• Large targets such as tarpaulins should be set out whenever imagery is captured for 
quantitative analysis.  Spectral reflectance measurements taken of the targets at the time 
of flying enables calibration to be carried out accurately, which is important for relating 
field measurements to the imagery. 

• Imagery for quantitative analysis should not be captured with a digital camera unless it is 
part of a multi-camera array or is fitted with a wheel-filter to enable the camera to be used 
in monochrome mode (King 1995).  It is strongly recommended that an appreciation of 
these matters is gained before acquiring airborne imagery.  The journal articles by King 
(1995) and Dean et al. (2000) should therefore be read. 

• Regular usage of airborne imagery will require the ability to “set up and go” quickly due to 
the lack of cloudless periods in the Wet Tropics that last more than a few days and the 
inability to safely predict when these will occur.  Ultra-light aircraft or drones (computer or 
radio controlled pilot-less aircraft) may provide a more timely means for the monitoring of 
environmental weeds.  Alternatively use of the Ergon Energy maintenance helicopter to 
capture imagery may also be a possibility. 

• Future work on the spectral response of weeds should be directed at measuring the 
seasonal variations for each species by establishing permanent plots for regular 
monitoring.  More data is needed for each species.  A clustering routine in a GIS that 
looks for true shoulders or peaks in spectral data should then be used to find spectral 
groups on a species by species basis. 

 
2.10 MANAGEMENT IMPLICATIONS 

Analysis of the ground data showed that identifying weeds to a species level is possible but 
requires more research and suitable imagery for its application.  The ADAR has appropriate 
spatial resolution of one metre but cannot be recommended for quantitative analysis.  A 
system that has narrow and discrete bandwidths would have vastly improved performance.  
There is also an unpredictable cost with ADAR imagery of waiting for good weather or being 
able to fly at short notice when clouds clear. 
 
Ikonos satellite imagery has excellent radiometric resolution, and accurately located cloud 
free images can be ordered, which is very convenient.  However, four metre spatial 
resolution is probably too coarse for accurate identification of weed infestations.  Similar 
imagery at two metre resolution will be available in three years or so, improving the potential 
of satellite imagery for this application. 
 
Hyperspectral imagery may be ideal for discriminating weeds.  Systems such as Compact 
Airborne Spectrographic Imagery (CASI) that uses many narrow bands, 11 bit radiometric 
resolution and one metre spatial resolution may be the best available.  Alternatively, the Multi 
Spectral Airborne Video System (MAVS) that uses four cameras, each with narrow bands, or 
the Multispectral Airborne Digital Imaging System (MADIS) would offer better spectral 
resolution than ADAR. 




